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NOMENCLATURE 

specific heat at constant pressure; 
gas-content parameter defined in equation (5); 
specific Gibbs function; 
specific enthalpy; 
mass ; 
pressure ; 
ambient pressure; 
vapor pressure evaluated at T,; 
equilibrium bubble radius; 
stable equilibrium gas-vapor bubble radius for a 
glVen Pamb ; 

maximum stable equilibrium gas-vapor bubble 
radius for a given G; 
unstable equilibrium radius of a vapor bubble; 
unstable equilibrium gas-vapor bubble radius 
for a given PanIb ; 

gas constant on a unit mass basis; 
specific entropy ; 
temperature (2: Tsat if unspecified); 
saturation temperature at pamb; 
volume; 
concentration of dissolved gas in a liquid; 
Henry’s Law constant; 
the~od~amic availability above a given dead 
state : 
potential barrier to nucleation; 
liquid superheat [= (7’,, - Tsat)]; 
density; 
surface tension between a liquid and its vapor. 

General subscripts 

2 
denoting permanent gas; 
denoting saturated liquid; 

8, denoting saturated vapor; 
I, denoting superheated liquid ; 
0, denoting the loca’lly superheated condition, 

* This work was supported in part by the R. L. 
Albrook Hydraulic Laboratory, Wash. State Univ., 
Division of Industrial Research. 

INTRODUCTION 
THE literatures of cavitation and of boiling have 

produced many worthwhile anaIyses [e.g. l-61 01 
aspects of the stability of superheated and su~~aturat~ 
liquid-gas-vapor systems. This note extends certain of this 
material to provide general equations and curves de- 
scribing the limits of stability of such systems. 

Bubbles grow spontaneously in supersaturated liquids 
because of mass diffusion into the liquid-gas interface, 
and in superheated liquids because of heat diffusion into 
the liquid-vapor interface with evaporation at the 
interface. In either case, a knowledge of the conditions 
on bubble stability with respect to growth or collapse 
aids in predicting growth inception and fixing initial 
conditions on dynamical equations. 

THE PHYSICAL CONDITIONS ON STABILITY 
A superheated or supersaturated liquid is in a condition 

of metastableequilibrium and canbeperturbed into astate 
of unstableequilibrium by adding an appropriate spherical 
gas-vapor bubble. A static balance on such a perturbation 
bubble requires that: 

When there is a constant mass of permanent ideal gas, 
m,,, in the bubble: 

3ma*T 
pa= baRS (2) 

but when mass diffusion is important: 

Pn=aB 

In the former case: 

hnb - pd G 1 .._-I____ _ - - - 
20 R= R 

3maS?T 
where: The gas-content parameter, G -_ ~ 

8s CJ (5) 

Figure 1 displays equation (4) for 21 values of G, in 
completely general form. Figure 1 is similar to a curve 
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given by Daily and Johnson [3], for the particular case of 
water at 68°F. 

The thermodynamic criterion for mechanical stability 
specifies that a system is stable if for all possible variations 
of its state: 

ap 
av T 

co 

thus the descending lines of constant G in Fig. 1 represent 
stable states and the ascending lines represent unstable 
conditions. The maximum stable radius, Rms, for a given 
G is obtained by maximizing R in equation (4) (see, e.g. 
Kd): 

40 

Rms = 3(Pu - pamb) 
(7) 

The radius, R,,, of a pure vapor bubble at the same pressure 
is obtained by setting G = 0 in equation (4): 

20 

X0 = (c- pmb) 
(8) 

All possible unstable equilibrium radii, as G is diminished 
at constant pv, fall between Rms and R. (see Fig. 2). 

Spontaneous growth by mass diffusion will proceed 
along a horizontal path to the right, from any initial 
point above the plot of equation (7), in Fig. 3. If 
(pamb - pv) is negative such a bubble will becomeunstable 
with respect to growth by heat diffusion when its radius 
attains the value specified by equation (7). Since predic- 
tions of rates of bubble growth by mass diffusion [7] 
and by heat diffusion [8, 91 reveal the latter to be far 
more rapid, mass diffusion must usually be ignored when 
R > Rms. All growth to the right of equation (7) will 
accordingly be vaporous. 

THERMODYNAMIC MEASURES OF STABILITY 
Frenkel [lo] gives the “potential barrier” to nucleation 

of pure vapor bubbles, dGt, as: 

dG = (47r/3) 0 Ro2 (10) 

this is a measure of the “free” mechanical energy needed 
to perturb a metastable liquid into instability. 

When undissolved permanent gas is present in the 
liquid it should diminish AG. In this case, AG can be 
computed as the change in the Gibbs function between 
the stable gas-vapor bubble of initial radius, Rin, and 
the unstable gas-vapor bubble of radius, Ru, at the 
same parnb (see Fig. 2). 

A G = 
[ 
mggg + rnlgc -1 maga + 4n 0 R2 

I 

R, 

R,, (“) 

The system considered includes the bubble and an 
amount of liquid surrounding it initially. The term 
4~r o R2 is the surface energy of the interface. Equation (11) 
simplifies to : 

\ ,lGof interest R) 

/ 

[ 1 R” 
AG = kg - gz) ms 

Rlll 

+ 471 0 (Ru* - RI,?) + ma 
J 
Ru dpa 

- (12) 
RID Pa 

Rms for pressure of Interest 

R,I for G of Interest 
Use of the ideal gas law (pu = pa/ST) and equation (2) 
lead to: 

r- ^ 
Rin dpa 

m, -= - 3,n.WT.lnE (13) 

FIG. 2. Detail of effect of gas content upon bubble 
equilibrium. furthermore : 

When equilibrium is determined by mass diffusion, 
equation (1) becomes: 

pamb - pv a/J 20 =--_ 
Pamb ihmb Pamb R 

(9) 

Equations (9) and (7) are both plotted in general co- 
ordinates in Fig. 3.* 

* Strasberg [2] gave similar curves for an (un- 
specified) particular situation, but he did not show 
how equation (9) behaved in the neighborhood of 
equation (7) in his plot. 

[ 1 Rin 4a 
mg = T pg(R2 - Rin3) (14) 

Rll 

The evaluation of (gg - gr) requires the use of the 
condition for thermal equilibrium: 

[d (Gibbs function) T, P] = 0 (15) 

which, applied to equation (11) with the understanding 
that gg, gl, and ma are constants, and dmg = 4 rrpg R2 dR, 
gives : 

(gB -gg1)4rhR2dR -t (m,/pa)dpa + 8nuRdR = O(16) 

t AG is not to be confused with G, nor to be inter- 
preted as a change in the gas-content parameter. 
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FIG. 3. The region of mass diffusion controlled gas- 
vapor bubble instability. 

Equation (2) and the ideal gas law eliminate pe and 11~~ 
from equation (16), whence : 

Substitution of equations (17), (14), (13), and (5) into 
equation (12) gives the dimensionless form of rlG for a 
gas-vapor bubble :* 

which reduces to equation (10) when G = 0. 
Figure 4 displays equation (18) in general co-ordinates 

and shows quantitatively how gas bubbles provide part 
or all of the ““triggering” perturbation needed to produce 
bubble growth. 

A measure of the extent to which a superheated liquid 
has departed from a stable equilibrium, is given by the 
work that the system could do upon its surroundings in 
returning to equilibrium. This is equal to the availability 
.---.- _.. . ~__ .~~_---.- . . ..- ..__~~~~_~~_ -. 

* Nesis and Frenkel Ill] expressed the potential 
barrier to the formation of a bubble in a homo- 
geneous gas-liquid solution in terms of the mole 
fractions of gas and vapor in the bubble. They used 
this expression to identify the unstable equilibrium 
radius. 

The present study, on the other hand, has assumed 
that both the stable and unstable equilibrium radii 
are known from a macroscopic analysis, and has com- 
puted the .dG required to perturb the stable radius 
into an unstable condition. This dG is accordingly 
smaller than Nesis and Frenkel’s value. 

FIG. 4. Theeffect of liquid superheat (as characterized 
by (pr -pa& /20) and gas content upon the 

potential barrier to nucleation. 
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of the system, da, above Pa& and Taat. In this isobaric 
case : 

Aa = (h, - hf) - Teat (so - s,) (19) 

but c, should be nearly constant in the temperature 
range of interest, so: 

Aa = c, AT TO - Tsat In -~- 
T,,t 

Since TO/Tsat is slightly greater than unity, 

In (To/T& N (gt - 1) -i (2; - 1)’ (21) 

whence : 6. 

Aa = -k 4~2 

2 Tsat 
(22) 

The quantity Aa specifies the capacity of a unit mass of 
superheated liquid for disrupting the system when 
nucleation is triggered. That Au increases with the square 
of the superheat, shows for example why bumping in a 
smooth test tube is far mQre violent than boiling in a 
rough tea-kettle even though it occurs at only slightly 
higher superheats. 
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NOMENCLATURE 

yo, half parallel plate gap; 
y+, dimensionless y co-ordinate; 
EH, eddy diffusivity for heat; 
cm, eddy diffusivity for momentum; 
8, ratio of heat inputs at walls. 

INTRODUCTION 
THE CALCULATIONS described in [1 ] have been repeated 
with the object of determining the order of change in the 
heat-transfer results caused by different choices of certain 
basic assumptions in the analysis. In addition the calcula- 
tions have been extended to a wider range of Prandtl 
numbers. 

In the previous work [1] it was assumed that the eddy 
diffusivity of momentum was constant over the middle 

half of the passage (i.e. between y,+/2 and 3y0+/2). That is, 
constant at the maximum value as given by Deissler’s 
form of the eddy diffusivity variation. A reconsideration 
of the available experimental work, particularly that of 
Corcoran et al., referred to in [1], showed that a more 
realistic assumption is to take the eddy diffusivity con- 
stant over the middle third of the passage (i.e. between 
2y,+/3 and 4y,+/3). This modification was made but, in 
fact, has a negligible effect on any of the heat-transfer 
results. 

It was also assumed in [1] that the ratio of the eddy 
diffusivities for momentum and heat was unity. In this 
extension ths ratio has been calculated from the expres- 
sions proposed by Azer and Chao [2]. 

Results were given in the previous article for Prandtl 
numbers of 0.1, 1.0 and 10. This work includes the further 
eigenvalues for Prandtl numbers 0.01 and 0.7 and some 


